A Novel Traffic Flow Reduction Method Based on Incomplete Vehicle History Spatio-Temporal Trajectory Data

نویسندگان

چکیده

In order to improve the effect of path planning in emergencies, missing position imputation and velocity restoration vehicle trajectory provide data support for emergency analysis. At present, there are many methods fill information, but they basically restore after analyzing a large number datasets. However, reduction method with few training sets needs be further explored. For this purpose, novel cube model (TDC) is designed store time, position, information hierarchically data. Based on model, three Hierarchical Trace-Back algorithms HTB-p, HTB-v, HTB-KF proposed paper. Finally, experiments verify that conduct different sample sets, it has satisfactory performance individual points segments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vehicle Trajectory Estimation Using Spatio-Temporal MCMC

This paper presents an algorithm for modeling and tracking vehicles in video sequences within one integrated framework. Most of the solutions are based on sequential methods that make inference according to current information. In contrast, we propose a deferred logical inference method that makes a decision according to a sequence of observations, thus processing a spatio-temporal search on th...

متن کامل

A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper p...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

Mining Spatio-Temporal Patterns in Trajectory Data

Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to th...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISPRS international journal of geo-information

سال: 2022

ISSN: ['2220-9964']

DOI: https://doi.org/10.3390/ijgi11030209